05.13.11 Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей

Приложение к рабочей программе по дисциплине Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей, направленной на подготовку к сдаче кандидатских экзаменов

1. Обшие положения

Кандидатские экзамены являются составной частью аттестации научных и научно-педагогических кадров. Цель экзамена - установить глубину профессиональных знаний аспиранта, уровень подготовленности к самостоятельной научно-исследовательской работе.

Сдача кандидатских экзаменов обязательна для присуждения ученой степени кандидата наук, а также для соискателей ученой степени доктора наук, не имеющих ученой степени кандидата наук.

Во время сдачи кандидатского экзамена по специальной дисциплине аспирант должен продемонстрировать глубокие знания теоретических основ избранного научного направления, понимать ее проблематику, ориентироваться в применяемых методиках.

Кандидатский экзамен по специальности состоит из двух частей:

- 1. Ответ на экзаменационные вопросы по специальности.
- 2. Защита реферата, тема которого отвечает проблематике специальности. Реферат сдается не менее чем за 10 дней до экзамена научному руководителю аспиранта.

Кандидатский экзамен по специальности сдается на четвертом году обучения в аспирантуре.

Настояшая программа кандидатского научной экзамена ПО специальности 05.13.11 Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей, составлена в соответствии с федеральным государственным образовательным стандартом образования профессионального разработана высшего согласно Российской требованиям законодательства Федерации системе послевузовского профессионального образования.

В основу программы положены следующие дисциплины: математические основы программирования; вычислительные машины, системы и сети; языки и системы программирования; технология разработки программного обеспечения; операционные системы; методы хранения и доступа к данным, организация баз данных и знаний; защита данных и программных систем.

Дополнительно к основной программе каждым аспирантом по теме диссертационного исследования готовятся дополнительные вопросы.

Процедура приема кандидатских экзаменов регламентирована Положением о подготовке научно-педагогических и научных кадров в

системе послевузовского профессионального образования в Российской Федерации, утвержденного приказом Министерства общего и профессионального образования РФ от 27.03.1998 № 814 (в действующей редакции).

Результаты экзамена оцениваются как «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Пересдача кандидатского экзамена не допускается. Результаты кандидатских экзаменов действительны до срока действия номенклатуры специальностей.

2. Цель кандидатского экзамена

Целью кандидатского экзамена по научной специальности «Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей» является определение уровня знаний, полученных аспирантами в результате освоения образовательных программ высшего образования, их готовность к защите кандидатской диссертации.

3. Содержание программы

Раздел 1. Математические основы программирования

Понятие алгоритма и его уточнения: машины Тьюринга, нормальные алгоритмы Маркова, рекурсивные функции. Эквивалентность данных формальных моделей алгоритмов. Понятие об алгоритмической неразрешимости. Примеры алгоритмически неразрешимых проблем.

Понятие сложности алгоритмов. Классы Р и NP. Полиномиальная сводимость задач. Теорема Кука об NP-полноте задачи выполнимости булевой формулы. Примеры NP-полных задач, подходы к их решению. Точные и приближенные комбинаторные алгоритмы.

Примеры эффективных (полиномиальных) алгоритмов: быстрые алгоритмы поиска и сортировки; полиномиальные алгоритмы для задач на графах и сетях (поиск в глубину и ширину, о минимальном остове, о кратчайшем пути, о назначениях).

Автоматы. Эксперименты с автоматами. Алгебры регулярных выражений. Теорема Клини о регулярных языках.

Алгебра логики. Булевы функции, канонические формы задания булевых функций. Понятие полной системы. Критерий полноты Поста. Минимизация булевых функций в классах нормальных форм.

Исчисление предикатов первого порядка. Понятие интерпретации. Выполнимость и общезначимость формулы первого порядка. Понятие модели. Теорема о полноте исчисления предикатов первого порядка.

Отношения и функции. Отношение эквивалентности и разбиения. Фактор множества. Отношения частичного порядка. Теоретикомножественное и алгебраическое определения решетки, их эквивалентность. Свойства решеток. Булевы решетки. Полные решетки.

Формальные языки и способы их описания. Классификация формальных грамматик. Их использование в лексическом и синтаксическом анализе.

Исчисление, правила редукции, единственность нормальной формы и правила ее достижения, представление рекурсивных функций.

Основы комбинаторного анализа. Метод производящих функций, метод включений и исключений. Примеры применения.

Коды с исправлением ошибок. Алфавитное кодирование. Методы сжатия информации.

Основы криптографии. Задачи обеспечения конфиденциальности и информации. Теоретико-информационный целостности теоретикоподходы к определению криптографической сложностный стойкости. **DES** Американский стандарт шифрования И российский стандарт шифрования данных ГОСТ 28147-89. Системы шифрования с открытым ключом (RSA). Цифровая подпись. Методы генерации и распределения ключей.

Раздел 2. Вычислительные машины, системы и сети

Архитектура современных компьютеров. Организации памяти и архитектура процессора современных вычислительных машин. Страничная и сегментная организация виртуальной памяти. Кэш-память. Командный и арифметический конвейеры, параллельное выполнение независимых команд, векторные команды. Специализированные процессоры. Машины, обеспечивающие выполнение вычислений, управляемых потоком данных. Организация ввода-вывода, каналы и процессоры ввода-вывода, устройства сопряжения с объектами.

Классификация вычислительных систем (ВС) по способу организации параллельной обработки. Многопроцессорные и многомашинные комплексы. Вычислительные кластеры. Проблемно-ориентированные параллельные структуры: матричные ВС, систолические структуры, нейросети.

Назначение, архитектура и принципы построения информационно – вычислительных сетей (ИВС). Локальные и глобальные ИВС, технические и программные средства объединения различных сетей.

Методы и средства передачи данных в ИВС, протоколы передачи данных.

Особенности архитектуры локальных сетей (Ethernet, Token Ring, FDDI).

Сеть Internet, доменная организация, семейство протоколов TCP/IP. Информационно-вычислительные сети и распределенная обработка информации.

Раздел 3. Языки и системы программирования. Технология разработки программного обеспечения

Языки программирования. Процедурные языки программирования (Фортран, Си), Функциональные языки программирования (Лисп), логическое программирование (Пролог), объектно-ориентированные языки программирования (Ява).

Процедурные языки программирования. Основные управляющие конструкции, структура программы. Работа с данными: переменные и (булевский, целочисленные, константы, типы данных плавающие, символьные, типы диапазона и перечисления, указатели), структуры данных (массивы и записи). Процедуры (функции): вызов процедур, передача (по ссылке, по значению, по результату), локализация переменных, побочные эффекты. Обработка исключительных ситуаций. Библиотеки процедур и их использование.

Объектно-ориентированное программирование. Классы и объекты, наследование, интерфейсы. Понятие об объектном окружении. Рефлексия. Библиотеки классов. Средства обработки объектов (контейнеры и итераторы).

Распределенное программирование. Процессы и их синхронизация. Семафоры, мониторы Хоара. Объектно-ориентированное распределенное программирование. СОВВА. Параллельное программирование над общей памятью. Нити. Стандартный интерфейс Open MP. Распараллеливание последовательных программ. Параллельное программирование над распределенной памятью. Парадигмы SPMD и MIMD. Стандартный интерфейс MPI.

Основы построения трансляторов. Структура оптимизирующего Промежуточные транслятора. представления программы: последовательность символов, последовательность лексем, синтаксическое Уровни абстрактное синтаксическое дерево. промежуточного представления: высокий, средний, низкий. Формы промежуточного представления.

Анализ исходной программы в компиляторе. Автоматные (регулярные) грамматики сканирование, контекстно свободные грамматики таблицы синтаксический анализ, организация символов программы, хеш-функции. имеющей блочную структуру, Нисходящие грамматики) и восходящие (LR(1)-грамматики) методы синтаксического анализа. Атрибутные грамматики и семантические программы, построение абстрактного Автоматическое синтаксического дерева. построение лексических и синтаксических анализаторов по формальным описаниям грамматик. Системы lex и yacc. Система Gentle.

Оптимизация программ при их компиляции. Оптимизация базовых блоков, чистка циклов. Анализ графов потока управления и потока данных. Отношение доминирования и его свойства, построение границы области доминирования вершины, выделение сильно связанных компонент графа. Построение графа зависимостей. Перевод программы в SSA-представление и обратно. Глобальная и межпроцедурная оптимизация.

Генерация объектного кода в компиляторах. Перенастраиваемые (retargetable) компиляторы, gcc (набор компиляторов Gnu). Переработка термов (term rewriting). Применение оптимизационных эвристик (целочисленное программирование, динамическое программирование) для

автоматической генерации генераторов объектного кода (системы BEG, Iburg и др.).

Машинно-ориентированные языки, язык ассемблера. Представление машинных команд и констант. Команды транслятору. Их типы, принципы реализации. Макросредства, макровызовы, языки макроопределений, условная макрогенерация, принципы реализации.

Системы программирования (СП), типовые компоненты СП: языки, трансляторы, редакторы связей, отладчики, текстовые редакторы. Модульное программирование. Типы модулей. Связывание модулей по управлению и данным.

Пакеты прикладных программ (ППП). Системная часть и наполнение. Языки общения с ППП. Машинная графика. Средства поддержки машинной графики. Графические пакеты.

Технология разработки и сопровождения программ. Жизненный цикл программы. Этапы разработки, степень и пути их автоматизации. Обратная инженерия. Декомпозиционные и сборочные технологии, механизмы наследования, инкапсуляции, задания типов. Модули, взаимодействие между модулями, иерархические структуры программ.

Отладка, тестирование, верификация и оценивание сложности программ. Генерация тестов. Системы генерации тестов. Срезы программ (slice, chop) и их применение при отладке программ и для генерации тестов.

Методы спецификации программ. Методы проверки спецификации. Схемное, структурное, визуальное программирование. Разработка пользовательского интерфейса, стандарт СUA, мультимедийные среды интерфейсного взаимодействия.

Раздел 4. Операционные системы

Режимы функционирования вычислительных систем, структура и функции операционных систем. Основные блоки и модули. Основные средства аппаратной поддержки функций операционных систем (ОС): система прерываний, защита памяти, механизмы преобразования адресов в системах виртуальной памяти, управление каналами и периферийными устройствами.

Виды процессов и управления ими в современных ОС. Представление процессов, их контексты, иерархии порождения, состояния и взаимодействие. Многозадачный (многопрограммный) режим работы. Команды управления процессами. Средства взаимодействия процессов. Модель клиент-сервер и ее реализация в современных ОС.

Параллельные процессы, порождения схемы И управления. Организация взаимодействия между параллельными И асинхронными обмен сообщениями, организация почтовых Критические участки, примитивы взаимоисключения процессов, семафоры Дейкстры и их расширения. Проблема тупиков при асинхронном выполнении процессов, алгоритмы обнаружения и предотвращения тупиков.

Операционные средства управления процессами при их реализации на параллельных и распределенных вычислительных системах и сетях: стандарты и программные средства PVM, MPI, OpenMP, POSIX.

Одноуровневые и многоуровневые дисциплины циклического обслуживания процессов на центральном процессоре, выбор кванта.

Управление доступом к данным. Файловая система, организация, распределение дисковой памяти. Управление обменом данными между дисковой и оперативной памятью. Рабочее множество страниц (сегментов) программы, алгоритмы его определения.

Управление внешними устройствами.

Оптимизация многозадачной работы компьютеров. Операционные системы Windows, Unix, Linux. Особенности организации, предоставляемые услуги пользовательского взаимодействия.

Операционные средства управления сетями. Эталонная модель взаимодействия открытых систем ISO/OSI. Маршрутизация и управление потоками данных в сети. Локальные и глобальные сети. Сетевые ОС, модель клиент — сервер, средства управления сетями в ОС UNIX, Windows NT. Семейство протоколов TCP/IP, структура и типы IP-адресов, доменная адресация в Internet. Транспортные протоколы TCP, UDP.

Удаленный доступ к ресурсам сети. Организация электронной почты, телеконференций. Протоколы передачи файлов FTP и HTTP, язык разметки гипертекста HTML, разработка WEB-страниц, WWW-серверы.

Раздел 5. Методы хранения данных и доступа к ним. Организация баз данных и знаний

Концепция типа данных. Абстрактные типы данных. Объекты (основные свойства и отличительные признаки).

Основные структуры данных, алгоритмы обработки и поиска. Сравнительная характеристика методов хранения и поиска данных.

Основные понятия реляционной и объектной моделей данных.

Теоретические основы реляционной модели данных (РДМ). Реляционная алгебра, реляционное исчисление. Функциональные зависимости и нормализация отношений.

CASE-средства и их использование при проектировании базы данных (БД).

Организация и проектирование физического уровня БД. Методы индексирования.

Обобщенная архитектура, состав и функции системы управления базой данных (СУБД). Характеристика современных технологий БД. Примеры соответствующих СУБД.

Основные принципы управления транзакциями, журнализацией и восстановлением.

Язык баз данных SQL. Средства определения и изменения схемы БД, определения ограничений целостности. Контроль доступа. Средства манипулирования данными.

Стандарты языков SQL. Интерактивный, встроенный, динамический SQL.

Основные понятия технологии клиент—сервер. Характеристика SQL-сервера и клиента. Сетевое взаимодействие клиента и сервера.

Информационно-поисковые системы. Классификация. Методы реализации и ускорения поиска.

Методы представления знаний: процедурные представления, логические представления, семантические сети, фреймы, системы Интегрированные знаний. продукций. методы представления Языки представления знаний. Базы знаний.

Экспертные системы (ЭС). Области применения ЭС. Архитектура ЭС. Механизмы вывода, подсистемы объяснения, общения, приобретения знаний ЭС. Жизненный цикл экспертной системы. Примеры конкретных ЭС.

Раздел. 6. Защита данных и программных систем

Аппаратные и программные методы защиты данных и программ. Защита данных и программ с помощью шифрования.

Защита от несанкционированного доступа в ОС Windows NT. Система безопасности и разграничения доступа к ресурсам в Windows NT. Файловая система NFTS и сервисы Windows NT.

Защита от несанкционированного копирования. Методы простановки некопируемых меток, настройка устанавливаемой программы на конкретный компьютер, настройка на конфигурацию оборудования.

Защита от разрушающих программных воздействий. Вредоносные программы и их классификация. Загрузочные и файловые вирусы, программы-закладки. Методы обнаружения и удаления вирусов, восстановления программного обеспечения.

Защита информации в вычислительных сетях Novell Netware, Windows NT и др.

4. Перечень примерных вопросов

- 1. Понятие алгоритма и его уточнения: машины Тьюринга, нормальные алгоритмы Маркова, рекурсивные функции. Эквивалентность данных формальных моделей алгоритмов. Понятие об алгоритмической неразрешимости. Примеры алгоритмически неразрешимых проблем.
- 2. Понятие сложности алгоритмов. Классы Р и NP. Полиномиальная сводимость задач. Теорема Кука об NP-полноте задачи выполнимости булевой формулы. Примеры NP-полных задач, подходы к их решению. Точные и приближенные комбинаторные алгоритмы.
- 3. Примеры эффективных (полиномиальных) алгоритмов: быстрые алгоритмы поиска и сортировки; полиномиальные алгоритмы для задач на графах и сетях (поиск в глубину и ширину, о минимальном остове, о кратчайшем пути, о назначениях).
- 4. Автоматы. Эксперименты с автоматами. Алгебры регулярных выражений. Теорема Клини о регулярных языках. Алгебра логики. Булевы

функции, канонические формы задания булевых функций. Понятие полной системы. Критерий полноты Поста. Минимизация булевых функций в классах нормальных форм.

- 5. Формальные языки и способы их описания. Классификация формальных грамматик. Их использование в лексическом и синтаксическом анализе. Основы комбинаторного анализа. Метод производящих функций, метод включений и исключений. Алфавитное кодирование. Методы сжатия информации.
- 6. Основы криптографии. Задачи обеспечения конфиденциальности и информации. Теоретико-информационный теоретикосложностный подходы к определению криптографической стойкости. шифрования DES И российский Американский стандарт стандарт шифрования данных ГОСТ 28147-89. Системы шифрования с открытым ключом (RSA). Цифровая подпись. Методы генерации и распределения ключей.
- 7. Архитектура современных компьютеров. Организации памяти и архитектура процессора современных вычислительных машин. Страничная и сегментная организация виртуальной памяти. Кэш-память. Командный и арифметический конвейеры, параллельное выполнение независимых команд, векторные команды. Специализированные процессоры. Машины, обеспечивающие выполнение вычислений, управляемых потоком данных. Организация ввода-вывода, каналы и процессоры ввода-вывода, устройства сопряжения с объектами.
- Классификация 8. вычислительных (BC) ПО способу систем параллельной обработки. Многопроцессорные организации Вычислительные кластеры. многомашинные комплексы. Проблемноориентированные параллельные структуры: матричные ВС, систолические структуры, нейросети.
- 9. Назначение, архитектура и принципы построения информационно вычислительных сетей (ИВС). Локальные и глобальные ИВС, технические и программные средства объединения различных сетей. Методы и средства передачи данных в ИВС, протоколы передачи данных.
- 10. Особенности архитектуры локальных сетей (Ethernet, Token Ring, FDDI). Сеть Internet, доменная организация, семейство протоколов TCP/IP. Информационно-вычислительные сети и распределенная обработка информации.
- 11. Языки программирования. Подходы к их классификации. Процедурные языки программирования (Фортран, Си), Функциональные языки программирования (Лисп), логическое программирование (Пролог), объектно-ориентированные языки программирования (Ява).
- 12. Процедурные языки программирования. Основные управляющие конструкции, структура программы. Работа с данными: переменные и константы, типы данных (булевский, целочисленные, плавающие, символьные, типы диапазона и перечисления, указатели), структуры данных (массивы и записи). Процедуры (функции): вызов процедур, передача

- параметров (по ссылке, по значению, по результату), локализация переменных, побочные эффекты. Обработка исключительных ситуаций. Библиотеки процедур и их использование.
- 13. Объектно-ориентированное программирование. Классы и объекты, наследование, интерфейсы. Понятие об объектном окружении. Рефлексия. Библиотеки классов. Средства обработки объектов (контейнеры и итераторы).
- 14. Распределенное программирование. Процессы и их синхронизация. Объектно-ориентированное распределенное программирование. Параллельное программирование над общей памятью. Распараллеливание последовательных программ. Параллельное программирование над распределенной памятью. Стандартный интерфейс MPI.
- 15. Основы построения трансляторов. Структура оптимизирующего Промежуточные представления транслятора. программы: последовательность символов, последовательность лексем, синтаксическое абстрактное синтаксическое Уровни промежуточного дерево. Формы представления: высокий, средний, низкий. промежуточного представления.
- 16. Анализ исходной программы в компиляторе. Автоматные (регулярные) грамматики и сканирование, контекстно свободные грамматики и синтаксический анализ, организация таблицы символов программы, имеющей блочную структуру, хеш-функции. Нисходящие и восходящие методы синтаксического анализа. Атрибутные грамматики и семантические программы, построение абстрактного синтаксического дерева. Автоматическое построение лексических и синтаксических анализаторов по формальным описаниям грамматик.
- 17. Оптимизация программ при их компиляции. Оптимизация базовых блоков, чистка циклов. Анализ графов потока управления и потока данных. Отношение доминирования и его свойства, построение границы области доминирования вершины, выделение сильно связанных компонент графа. Построение графа зависимостей. Глобальная и межпроцедурная оптимизация. Генерация объектного кода в компиляторах.
- 18. Машинно-ориентированные языки, язык ассемблера. Представление машинных команд и констант. Команды транслятору. Их типы, принципы реализации. Макросредства, макровызовы, языки макроопределений, условная макрогенерация, принципы реализации.
- 19. Системы программирования (СП), типовые компоненты СП: языки, трансляторы, редакторы связей, отладчики, текстовые редакторы. Модульное программирование. Типы модулей. Связывание модулей по управлению и данным.
- 20. Пакеты прикладных программ (ППП). Системная часть и наполнение. Языки общения с ППП. Машинная графика. Средства поддержки машинной графики. Графические пакеты.
- 21. Технология разработки и сопровождения программ. Жизненный цикл программы. Этапы разработки, степень и пути их автоматизации.

Декомпозиционные и сборочные технологии, механизмы наследования, инкапсуляции, задания типов. Модули, взаимодействие между модулями, иерархические структуры программ. Отладка, тестирование, верификация и оценивание сложности программ. Генерация тестов. Системы генерации тестов.

- 22. Методы спецификации программ. Методы проверки спецификации. Схемное, структурное, визуальное программирование. Разработка пользовательского интерфейса, мультимедийные среды интерфейсного взаимодействия.
- 23. Режимы функционирования вычислительных систем, структура и функции операционных систем. Основные блоки и модули. Основные средства аппаратной поддержки функций операционных систем (ОС): система прерываний, защита памяти, механизмы преобразования адресов в системах виртуальной памяти, управление каналами и периферийными устройствами.
- 24. Виды процессов и управления ими в современных ОС. Представление процессов, их контексты, иерархии порождения, состояния и взаимодействие. Многозадачный (многопрограммный) режим работы. Команды управления процессами. Средства взаимодействия процессов. Модель клиент-сервер и ее реализация в современных ОС.
- 25. Параллельные процессы, схемы порождения и управления. Организация взаимодействия между параллельными и асинхронными процессами: обмен сообщениями, организация почтовых ящиков. Критические участки, примитивы взаимоисключения процессов, семафоры Дейкстры и их расширения. Проблема тупиков при асинхронном выполнении процессов, алгоритмы обнаружения и предотвращения тупиков.
- 26. Операционные средства управления процессами при их реализации на параллельных и распределенных вычислительных системах и сетях: стандарты и программные средства. Одноуровневые и многоуровневые дисциплины циклического обслуживания процессов на центральном процессоре.
- 27. Управление доступом к данным. Файловая система, организация, распределение дисковой памяти. Управление обменом данными между дисковой и оперативной памятью. Рабочее множество страниц (сегментов) программы, алгоритмы его определения.
- 28. Оптимизация многозадачной работы компьютеров. Операционные системы Windows, Unix, Linux. Особенности организации, предоставляемые услуги пользовательского взаимодействия.
- 29. Операционные средства управления сетями. Эталонная модель взаимодействия открытых систем ISO/OSI. Маршрутизация и управление потоками данных в сети. Локальные и глобальные сети. Сетевые ОС, модель клиент сервер, средства управления сетями в ОС UNIX, Windows NT. Семейство протоколов TCP/IP, структура и типы IP-адресов, доменная адресация в Internet. Транспортные протоколы TCP, UDP.

- 30. Удаленный доступ к ресурсам сети. Организация электронной почты, телеконференций. Протоколы передачи файлов FTP и HTTP, язык разметки гипертекста HTML, разработка WEB-страниц, WWW-серверы.
- 31. Концепция типа данных. Абстрактные типы данных. Объекты (основные свойства и отличительные признаки). Основные структуры данных, алгоритмы обработки и поиска. Сравнительная характеристика методов хранения и поиска данных.
- 32. Основные понятия реляционной и объектной моделей данных. Теоретические основы реляционной модели данных (РДМ). Реляционная алгебра, реляционное исчисление. Функциональные зависимости и нормализация отношений.
- 33. CASE-средства и их использование при проектировании базы данных (БД). Организация и проектирование физического уровня БД. Методы индексирования. Обобщенная архитектура, состав и функции системы управления базой данных (СУБД). Характеристика современных технологий БД. Примеры соответствующих СУБД.
- 34. Язык баз данных SQL. Средства определения и изменения схемы БД, определения ограничений целостности. Контроль доступа. Средства манипулирования данными. Стандарты языков SQL. Основные понятия технологии клиент—сервер. Характеристика SQL-сервера и клиента. Сетевое взаимодействие клиента и сервера.
- 35. Методы представления знаний: процедурные представления, логические представления, семантические сети, фреймы, системы продукций. Интегрированные методы представления знаний. Языки представления знаний. Базы знаний.
- 36. Информационно-поисковые системы. Классификация. Методы реализации и ускорения поиска. Экспертные системы (ЭС). Области применения ЭС. Архитектура ЭС. Механизмы вывода, подсистемы объяснения, общения, приобретения знаний ЭС. Жизненный цикл экспертной системы.
- 37. Аппаратные и программные методы защиты данных и программ. Защита данных и программ с помощью шифрования. Защита от несанкционированного доступа в ОС Windows NT. Система безопасности и разграничения доступа к ресурсам в Windows NT. Файловая система NFTS и сервисы Windows NT.
- 38. Защита от несанкционированного копирования. Методы простановки некопируемых меток, настройка устанавливаемой программы на конкретный компьютер, настройка на конфигурацию оборудования.
- 39. Защита от разрушающих программных воздействий. Вредоносные и их классификация. Загрузочные программы И файловые вирусы, программы-закладки. Методы обнаружения И удаления обеспечения. Защита восстановления программного информации вычислительных сетях Novell Netware, Windows NT и др.